skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wood, Clinton M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physics-based ground motion simulations are a valuable tool for studying seismic sources with missing historical records, such as Cascadia Subduction Zone (CSZ) interface earthquakes. The last such event occurred in 1700 CE and is believed to be an M8-M9 rupture. The United States Geological Survey recently developed 30 physics-based simulations of a CSZ rupture to predict ground motions across the Pacific Northwest. Consideration of key modeling uncertainties across these simulations leads to estimates of ground motion intensity that vary by ~100% in some areas (e.g., Seattle). Paleoliquefaction, or soil liquefaction from past earthquakes, provides the best geologic evidence for constraining or "ground truthing" the intensity of past shaking, yet while paleoliquefaction has been documented throughout Cascadia, limited analyses have been performed to exploit this evidence. This study focuses on Kellogg Island, 2 mi south of Seattle, where liquefaction has been documented from several earthquakes, but not from the 1700 CE event. Therefore, using the CSZ simulations and in situ cone penetration test data, this study predicts the probability of surficial liquefaction manifestation at Kellogg Island during an M9 CSZ event. As part of this effort, velocity profiles are developed from multichannel analysis of surface waves, and non-linear site response analyses are used to propagate simulated motions to the surface. Results show a high probability of liquefaction near Kellogg Island for most simulations, whereas to date no evidence of 1700 CE liquefaction has been discovered at Kellogg Island, nor at any other location in the Puget Sound. The discrepancy between predictions and observations might indicate that the 1700 CE ground motions were less intense in Seattle than most predictions of M9 earthquakes indicate. Toward the goal of elucidating the expected impacts of future CSZ earthquakes, similar analyses are ongoing at additional sites across the region. 
    more » « less